Journal of Sound and Vibration (1999) 221(4), 567-585
Article No. jsvi.1998.2050, available online at http://www.idealibrary.com on IIIE};I

®

VIBRATIONS OF CIRCULAR TUBES AND
SHELLS FILLED AND PARTIALLY
IMMERSED IN DENSE FLUIDS

M. AMABILI

Department of Industrial Engineering, University of Parma, Viale delle Scienze,
Parma 43100, Italy

(Received 7 April 1998, and in final form 9 October 1998)

Free vibrations of circular cylindrical shells and tubes completely filled with a
dense fluid and partially immersed in a different fluid (liquid) having a free
surface are studied. Elastic shell constraints, varying from simply supported to
clamped ends are assumed. Fluids are assumed to be stationary, inviscid and
incompressible. The fluid outside the shell is assumed to be unlimited in the
radial direction and limited in the vertical direction by a rigid bottom and a
free surface. The effect of free surface waves is considered, so that both
sloshing and bulging modes of the system are investigated. A velocity potential
is used to describe the fluid oscillations, and the Rayleigh—Ritz method has
been extended to the case of fluid—structure interaction to obtain the solution
of the coupled system.
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1. INTRODUCTION

Vibrations of thin walled structures interacting with dense fluids are important in
many engineering applications, for example in heat exchangers, nuclear plants,
large storage tanks and rockets. Many studies are available on this topic from
which circular cylindrical shells have received a large attention.

In the present study, free vibrations of circular cylindrical shells and tubes
completely filled with a dense fluid and partially immersed in a different fluid
(liquid) having a free surface are studied. Elastic shell constraints, varying from
simply supported to clamped ends are assumed. This is an idealisation of a
configuration that can be observed, for example, in off-shore structures or in
steam condensers. Natural frequencies of tubes in similar situations are
important for the computation of the critical velocity that gives the tube
instability. The model developed is suitable to study flexural vibrations of both
short and long shells (circular tubes). In fact, in some applications (e.g., steam
condensers) the tubes are relatively long and can be conveniently studied as
beams. It can also be noted that tubes in a steam condenser are usually
expanded at the ends, so that they can be modelled with an elastic constraint
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with respect to the flexural slope, i.e., a constraint comprised between simply
supported and clamped ends, depending on the assumed spring stiffness.

Different internal and external fluids are considered in this study. They are
assumed to be stationary, inviscid and incompressible. The fluid outside the shell
is assumed to be unlimited in the radial direction and limited in the vertical
direction by a rigid bottom and a free surface. The effect of free surface waves is
considered. Since the fluid inside the shell/tube is assumed to be stationary, the
effect of fluid-flow inside the shell/tube is not studied. This effect has already
been investigated for example by Paidoussis et al. [1], Paidoussis [2] and Weaver
and Unny [3] in the case of fluid-filled shells and tubes, however, without
considering free surface waves. Finally, in the present study, the velocity
potential is used to describe the fluid oscillations, and the Rayleigh—Ritz method
has been extended to the case of fluid—structure interaction [4] to obtain the
solution of the coupled system.

Other studies can be related to the present one. Vibrations of beams in dense
fluid have been studied, e.g., in references [5—7]. Vibrations of completely fluid-
filled circular cylindrical shells have been investigated by Berry and Reissner [§];
their study was then extended to modes having more longitudinal half-waves by
Lindholm et al. [9]. Shell vibrations in other configurations related to the present
one have been studied, e.g., by Amabili [4], Amabili er al. [10], Au-Yang [11],
Chiba [12], Gongalves and Ramos [13], and Warburton [14]. However, it seems
that no studies are available for circular cylindrical shells coupled to an external
unbounded fluid, considering the effect of free surface waves and studying the
coupling between sloshing modes (where the amplitude of the free surface waves
is larger than the wall displacement) that are originated by fluid oscillations, and
bulging (where the shell wall oscillates, thus moving the liquid) modes, that are
due to the structure’s elasticity. In order to lighten the text, in the following the
word “‘shell”” is sometimes also used to indicate tubes.

2. BASIC EQUATIONS

The Rayleigh—Ritz method [15] is applied to find the natural modes and
frequencies of the simply supported shell, assuming the time variation to be
harmonic. A cylindrical co-ordinate system (O; x, 0, r) is introduced with the
origin O placed at the centre of the bottom end of the shell (Figure 1) and u, v, w
are assumed to be the shell displacements in axial, circumferential and radial
directions, respectively. The boundary conditions at the shell ends are

N,=0; v=0;, w=0; at x=0,L, (1)

where N, is the force per unit length in the x direction acting at the shell end.
The flexural mode shapes w of the shell can be expressed as follows:

w(x, 0) = cos(nb) i qsBssin(snx/L), (2)

s=1

where L is the length of the shell, n is the number of circumferential waves, s is
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Figure 1. Geometry of the system and co-ordinates.

the number of axial half-waves, ¢, are the parameters of the Ritz expansion and
B, is a constant dependent on the normalization criterion used; w is assumed to
be positive outwards. The eigenvectors of the empty simply supported (also
called shear diaphragm [16]) cylindrical shell are used as admissible functions.
Obviously, for tube vibrations only modes having n = 1 are significant. In the
present analysis, axisymmetric modes (n = 0) are not considered. The flexural
displacement at time ¢ is obtained multiplying w by the harmonic function
f(t) = €', where i = v/—1 and o is the radian frequency of vibration. Then, the
following normalization is introduced:

L
J B?sin*(smx/L) dx = 1, (3)
0

and integration gives

B,=B=1/2/L. (4)

In order to solve the problem, the kinetic and potential energies of the shell
are evaluated. The reference kinetic energy 77 of the shell, neglecting the
tangential and rotary inertia, is given by

21

o1
Ti =5 prhBy, J

L 00
1 L
y2 = — — 2 2
. Jo w” dxa do 2pTah 5 By,n SE=1 qs, (5)

where /1 is the shell/tube thickness, « is the mean radius, pr is the density of the
shell material [kg/m?] and %, = 1 for n # 1 and y, = 2 for beam bending (n = 1)
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modes of long shells (L/(sa) = 4). In equation (5) the orthogonality of the sine
function has been used. Neglecting tangential inertia is a very good
approximation for thin shells. However, it is completely unacceptable for long
shells in their beam bending (» = 1) modes [16]. For these modes the effective
inertia is twice the quantity obtained with this approximation; this is the reason
for introducing the parameter y, in equation (5).

It is now useful to note that the maximum potential energy of each mode of
the empty shell is equal to the reference kinetic energy of the same mode
multiplied by the squared circular frequency w? of this mode. Moreover, due to
the series expansion of the mode shape, the potential energy is the sum of the
energies of each single component mode. As a consequence, the maximum
potential energy of the shell may be expressed as

1 L ~
VT = EpThaaBz}fnnSz:l:q?w?’ (6)

where w; are the circular frequencies (rad/s) of the flexural modes of the simply
supported shell that can be computed by using, for example, the Fliigge theory
[16] for shells or the classical formula for the free transverse vibrations of a
simply supported beam [17] for tubes.

Elastic rotational springs of stiffness ¢ (N m/m) are assumed to be distributed
around each shell end (see Figure 1). The maximum potential energy Vg
associated with these elastic springs is given by

1 (2| fow\? ow\ 2
=—_c — do
VS 26[0 [<8x>x=0+ <8x)x=L]a

caBPm? S & ) :
= gsqsill + (=1)""]. (7)
2L s=1 j=1

It is to be noted that ¢ =0 gives simply supported ends and ¢— oo gives
clamped ends. In the computations, one takes a sufficiently high value of ¢ to
simulate a clamped end [4].

3. FLUID-STRUCTURE INTERACTION

The shell is considered completely filled with an inviscid and incompressible
dense fluid and partially immersed in another dense fluid with a free surface
orthogonal to the shell axis. The free surface is at a distance H from the rigid
bottom (Figure 1). The ends of the shell are assumed to be open. Surface tension
of the fluid and hydrostatic pressure effects are neglected in the present study.

For an incompressible and inviscid fluid, its deformation potential satisfies the
Laplace equation

Vip(x, 0,r) =0. (8)

The deformation potential ¢ is related to the velocity potential ¢ by
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d(x, 0, r, 1) = iwg ', 9)
which is assumed to be harmonic. The velocity of the fluid v is related to (}5 by
v = —grad ¢. In the case studied, there are two different fluid domains. One is

inside the shell/tube and one is outside.

3.1. FLUID INSIDE THE SHELL/TUBE
The Laplace equation (8) is solved with the boundary conditions

;=0 at x=0,L and (0¢;/0r),_g, = —W, (10a, b)

where ¢; is the deformation potential of the fluid inside the shell and R, is the
inner radius of the shell. Moreover ¢; must be regular in the fluid domain.
Equation (10a) states that the shell ends are open and equation (10b) ensures a
contact between the shell wall and the fluid. Solution of Laplace equation
satisfying equation (10a) and regularity is [8, 9]

b, = f: ascos(nd)L,(smr/L) sin(snx/L), (11)
s=1

where I, is the modified Bessel function of order n. Applying condition (10b),
one obtains

qsB
(sm/L)L (stRy/L)’

ag = — (12)
where the prime indicates the derivative with respect to the argument. By using

equations (11, 12) the fluid deformation potential ¢; at the shell-fluid internal
interface is obtained as follows

(¢1),—g, = —Bcos(n0) i gssin(smx/L) (sn/InL(;ITI(QSZRa)/L) '

s=1

(13)

The reference kinetic energy of the fluid inside the shell, by using Green’s
theorem [4, 18], is

1 L (2% 8(,{) 1 L (2

0 0JoO

1 L = I,(stR;/L)
=—pp R =B § 2 14
PP P L (L) (snRy /L) (14)

where pp. is the mass density of the fluid inside the shell. A discussion of the
effect of the shell radius on equation (14) can be found in Appendix A. No
potential energy is associated with the fluid inside the shell as a consequence that
it is incompressible and that it does not present a free surface.
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3.2. FLUID OUTSIDE THE SHELL/TUBE

The fluid domain outside the shell is not limited in the radial direction; in the
x direction it is limited by a rigid surface at x = 0 and the free surface at x = H.
The fluid deformation potential ¢,, using the principle of superposition, can be
divided into

¢o:¢8+¢S7 (15)

where ¢ describes the potential of the fluid associated with bulging modes of
the shell considering a zero dynamic pressure on the undisturbed free surface
and ¢ is due to the sloshing (oscillations) of the fluid considering the shell as
rigid.

The boundary conditions imposed to the liquid for the two complementary
boundary value problems are

0 ) ' .
(%l—o: N <%)V_R2: W, (@) =0, lim ¢ = lim (9pp/0r) =0,
(16a—d)

). oo (), 0 o) o
<8x v=0 o ) r, #\ox x=H @ Golerr (17a—d)

lim ¢g = lim (9s/r) = 0.

and

In equations (16) and (17), R, is the outer radius of the shell. By using equations
(15) and (16c), the linearized free surface condition [18], equation (17c), can be
rewritten as

g [W] x:H: w2(¢5)x=H= (18)

where g is the gravity acceleration.
The Rayleigh quotient [4, 19] for the coupled fluid-structure system studied, is
given by:

o =Vr+Vs+Vg)/(Th+Th+T5). (19)

The only terms that remain to be computed in equation (19) are the reference
kinetic energy of the fluid outside the shell, T *0, and its maximum potential
energy, Vr,, related to the free surface waves of the fluid itself. By using Green’s
theorem for harmonic functions [4, 18], the reference kinetic energy of the fluid
outside the shell can be transformed into

-, 1 09,
T‘;o _EpFu JJ ¢(} Oz dS’ (20)

St+SF

where pp is the mass density of external fluid, z is the direction normal to any
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point on the boundary surface S of the fluid domain and is pointed outwards,
S =Sr+ S, where Sy is the shell lateral external surface and Sy is the free
liquid surface (no contribution to T, 7 1s given by integration over the rigid
bottom). The simplified reference kinetic energy 77 of the fluid outside the shell
is also defined as

1 0 1
i —5on || 6,52 as =30 [ @s+dgwas—mi e i e
2 0z 2
Sy Sy
The maximum potential energy Vi of the free surface waves of the fluid is given
by [4]
_ 1 8¢o a¢o _ 1 2 ad)o
VE, _EpF“gJJ 0z Oz ds PR JJ P 0z ds, (22)
SF SF

where the second equality is obtained by using the free surface condition,
equation (17c¢). It is interesting to observe that, by using equations (20) and (22),
the Rayleigh quotient can be rewritten in the following simplified form:

* = (Vr+Vs)/(Tf + Tf + T#), (23)

where the potential energy Vy does not appear. Furthermore, it is no longer
necessary to integrate the quantity ¢,(0¢,/0z) over the free surface of the fluid
Sr. In conclusion, only the additional term 7% due to the external fluid must still
be computed and is given by two terms, as shown in equation (21).

3.2.1. Fluid deformation potential related to bulging modes

In this section, the deformation potential of the fluid related to bulging modes
of the shell is investigated. The fluid deformation potential ¢ is assumed to be
of the form

¢p =Y 0P (24)
s=1

The functions @, are given by

> 2m—1 r 2m—1 «x
&i(x, 0,1) = A K, <—rc—) cos( n—) cos(nb), (25)
S k(2 ) o

where A,,, are coefficients depending on the integers s and m, H is the fluid level
and K,, is the modified Bessel function of order n. Functions @, satisfy the
Laplace equation and the two boundary conditions given in equations (16b, c);
moreover they satisfy the Sommerfeld radiation condition (16d). The condition
given in equation (16a) is used to compute the coefficients 4,

oo

C2m—-1)n_,(2m—1 R, 2m—1 «x : X
W;Asm ¥ K, 5T ) cos T "g :—Bsm(snz). (26)
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Equation (26) must be satisfied for all values of 0<x<H. If this equation is
multiplied by cos(}(2j — 1)(nx/H)) and then integrated between 0 and H, using
the well-known properties of the orthogonal trigonometric functions, the
following equation is obtained

2m—1 x
cos( > nﬁ> cos(nf), (27)

2m—1 r
Kﬂ - A Tr
S v
o 2m _ 1 Siﬂ

1 ( _171-&
I’l 2 H

where
i—i—( 1),,12m—1 . H
L 27 T oL (283)
2 Am? —dm+ 1 2 H
12 4H?
or
L . 2m—1L
asm—zn if s T (28b)

Therefore, the term 77, of the reference kinetic energy of the fluid is given by

1 2n H
T7, = EpFO J J (¢B),,:R2WR2 do dx
0 Jo

oo X0

2m — 1 R2
. 40,,0; Ky > "H
sm ]m
B D e
s=1 j=1 m= 1 K; 5 Tcﬁ

3.2.2. Fluid deformation potential related to sloshing modes
The fluid deformation potential ¢ due to the sloshing can be written in the

form
> H
= mz::l [FmJn (8,,1 RL2> cosh (Em Rlz) / cosh <8m R_2>

r X H
mYn ~m o h ~m o h ~m N 5
+G <8 R2> cos <s R2>/cos <8 Rz)} cos(nf) (30)

where F,, and G,, are the parameters of the Ritz expansion of the sloshing
modes, J, and Y,, are the Bessel functions of order n and ¢,, and &,, are solutions
of the following equations

J(em) =0, Y, (&,)=0, for m=1,...00. (31a, b)
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Constants cosh(e,,H/R,) and cosh(g,,H/R,) are not necessary in equation (30);

however, they are useful to obtain a well-conditioned mass matrix of the system

in the Galerkin equation that is obtained by applying the Rayleigh—Ritz method.
The term 77 of the kinetic energy of the fluid due to sloshing is

1 2n oH
Tr, = 3 PE, J Jo (¢s),—r,WRy dx dO

1 o0 00
= EPF(,R%nB Z Z s[Emdn(&m)ygn/ cosh(enH/Ro)

s=1 m=1

+ G Yu(Em)Vsm/ cosh(énH/Ry)], (32)

where
17 X STX
VYsm = EJO cosh <8m R_2> Sll'l< 17 ) dx
TRy _snRs cos snH cosh| ¢ il =+ &, sin snH sinh| & A
o L L L m R2 m L m R2

b
32n2a2

L2

(33)

2
&

and y,, is obtained from 7, by substituting ¢, with &, in equation (33). The
potential ¢¢ satisfies equations (17a, b, d). Now the free surface condition,
equation (18), must be applied. By using equations (27, 30) and eliminating
cos(n0), it gives

DBE dk—1 r (2k—1 R,
~ 242D "S"K”<T”FI>/K"<T " ﬁ)

s=1 k=1

Em r H H
+ 2:1 [ R, F,J, (8,,1 R2> tanh <8m Rz) +— GmYn (em Rz) tanh <sm Rzﬂ

- _Z [FmJn <gm ) +GyY, <e R%)] . (34)

m=1

Equation (34) must be satisfied for all values of R, <r<oo. In the case of a rigid
shell, natural frequencies of sloshing modes are immediately found. They are
w?, = g(em/Ry) tanh(e, H/Ry) and w?, = g(&,,/R,) tanh(g,,H/R,). In contrast, the
variable p = Ry/r, 0<p<1, is introduced and the following Fourier—Bessel

expansions [20, 21] to solve the problem for a flexible shell are used
3m/p Zasm n\€spP (35)

oo

Yn(EVn/p) = Z bmen(gsp)9 (36)

s=1
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K, (b£&> i csadn(esp), (37)
where
Agn = @ ii?)-]i(gs) J; 1, (%")Jn(e‘x) dx, (38)
bgn = —(8% — ii]ﬁ(sx) J; xY, <%> Ja(e5x) dx, (39)
2¢2 : 2k—1n R,
Csk = m L x K, <T?]?> J(g5x) dx. (40)

The functions given in equations (35, 36) are highly oscillating for p close to
zero. However, it was verified that the series expansion converges to the function
in the entire region little away from zero. Inserting equations (35-37) into
equation (34), the following set of algebraic equations is obtained:

o0

2B o k Osk
_ﬁ;qu(_l) K/<2k_1 R2> Cik

k=1 _“
> H

< [e H £, H
+ Z |:RW; Fnajy, tanh <8m R_2> +— : Gmblm tanh <‘5m R2>:|

2 o0

?Z Fontim + Gubiy), for i=1,...00. (41)

8

m=1

Equation (34) can also be used to obtain a set of algebraic equations in a
different way. In fact, it is possible to compute all functions of r at different
values r;, R, <r;<oo, in order to formally have the same equation (41), where the
following expressions substitute equations (38), (39) and (40):

ri O 2k —1 ri
Aim =Ty <8m R_2> , bim=Y, <8m R_2> , ok =K, <T T ﬁ) . (423_0)

Finally, the height n of free surface waves can be computed by using the
following expression [18§]

6()2
) = (‘Z‘f) — =2 (b5)ecn 43)
x=H
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4. FREQUENCY EQUATION

For the numerical calculation of the natural frequencies and the parameters of
the Ritz expansion of modes, only N terms in the expansion of w, equation (1),
and 2N in the expansion of ¢, equation (30), are considered, where N and N
must be chosen large enough to give the required accuracy to the solution. Thus,
all the energies are given by finite summations. Here it is convenient to introduce
a vectorial notation. The vector q of the parameters of the Ritz expansions is
defined by

¢ = {a} " {F} (G} ) {4} ={aq.... aw).

(FY' = {F,... Fy}, {G}' ={Gi.... Gy}. )
The maximum potential energy of the shell/tube, equation (6), becomes
Vr =3 m{a) Kafa} (45)
The elements of the diagonal matrix K are given by
K7l = 5SjpThaI§Bzxnwf, s,j=1,..., N, (46)

and ¢, is the Kronecker delta.
The maximum potential energy stored in the elastic spring constraints, using
equation (7), is given by

1
Vs =3 n{q} 'Ks{q}. (47)
where the elements of the matrix Kg are

Ks,; = c(a/L)nBsjll + (=1)"7], s, j=1,...,N. (48)

The reference kinetic energy of the shell/tube, equation (5), may be rewritten
as

|
Ty = Eﬂ{Q}TMT{Q}, (49)
where
My = prha(L/2)B*y,], (50)

and I is the N x N identity matrix.

The simplified reference kinetic energy of the fluid, that was previously divided
into one contribution due to the fluid inside the shell and two different
contributions due to the fluid outside, equation (21), can be rewritten as

1

T, =5mq'Mrq, (51)

where M- is a symmetric partitioned matrix of dimension (N + 2N) x (N + 2N):
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Mg, M
M=o ol ] | 32

in which the submatrix My of dimension N x N is given by the contribution of
T¢ and TF,

Mg =M, +M,. (53)
The elements of the submatrix Mg due to 7} according to equation (14), are
given by

L

STR /L
[Mi]s_;=5sjPF,R1 B L(smRy/L)

(sm/ L) (snR /L)

for s,j=1,..., N, (54)

where 0 is the Kronecker delta. The elements of the submatrix M, due to TF7,,
according to equation (29), are given by

>~ 4050 )m n( 2 H

2m — 1 R2>
n_
M,]; = —pp, RaB> > G Dr T R o Si= e, (55)
ml A I
Kn< > nH>

where o, are defined in equations (28a, b). B
The elements of the submatrices Mg; and Mg, of dimension N x N, according
to equation (32), are

Mgy, = pFoRgB Jo(&m)ygn/ cosh(enH/Ry), for s=1,...,N and

M2, = pFaR%B Y, (&n)Ygn/ cosh(é, H/Ry), for s=1,...,N and

m=1,....,N. (57

The free surface condition, equation (41), can be rewritten in the following
form:

{q} {q}
{Ei. Eo, E3}q {F} 5 = o*{[0], H;, Ho} ¢ {F} . (58)
{G} {G}

where E; has dimension 2N x N and E,, E;, H, and H, have dimension 2N x N;
these matrices are given by

2k—1 R -
:_g_zo'/kczk ( n—z), for i=1,...,2N and

2 H
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j=1,...N, (59)

[Ea]; = gajj(¢j/ Ro) tanh(g;H/Ry), fori=1,... 2N and j=1,... N, (60)
[Es]; = gby(§;/Ry) tanh(§;H/Ry), fori=1,... 2N and j=1,... N, (6l)
[Hl]lj =a; for i=1,... 2N and j=1,... N, (62)
[Hy]; = by, for i=1,...2N and j=1,... N. (63)

The values of the vector q of the parameters of the Ritz expansion are
determined in order to render the Rayleigh quotient of equation (23) stationary
[15], by also inserting in the eigenvalue problem the free surface condition that
determines the value of the coefficients F,, and G,, [4, 10, 12, 13]. Then the
following Galerkin equation is obtained:

Kr+Ks [0] [0]} _AZ[MT+MB Msi Ms2|

=0, 64
E, E, E;|1 0] H H |1 (64)

where A is the circular frequency of the shell/tube filled and partially submerged
with fluid. Equation (64) gives a linear eigenvalue problem for a real, non-
symmetric matrix.

The pressure exerted by the fluid at a point of the shell/tube wall can be
computed by using the linearized Bernoulli equation:

(p)point = pF(a(Z)/a[)pomr = _pFw2(¢)point eiw” (65)

where pr and ¢ are relative to the fluid inside or outside the shell.

5. NUMERICAL RESULTS

Numerical solutions have been obtained by using the software Mathematica
[22] to compute matrices and solve the eigenvalue problem associated with
equation (64). In particular, 10 terms have been used in the expansion of shell
modes and four terms in the expansion of the sloshing potential. These are
enough to give a good accuracy for studied cases. In fact, the eigenvalues quickly
converge (from above) to the actual ones increasing the number of terms used in
the expansion. Table 1 shows the convergence of the solution with the number N
of terms in the expansion of w (first case studied).

The first case studied is a water-filled, simply supported shell partially in
contact with external water to the level H =1 m. The following dimensions
and material properties are taken: a¢=025m, L=2m, h=1mm,
pr = pp, = 1000 kg/m?, py= 7850 kg/m?, E =206 GPa and v =03. They
correspond to a very thin steel shell in water. The natural frequencies of the first
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TABLE 1

Natural frequencies (Hz) of the first four bulging modes of the steel shell, obtained with
different number N of terms in the Rayleigh—Ritz expansions of w;n =2 and N =2

N 1st mode 2nd mode 3rd mode 4th mode
2 22-39 82:72 - -

4 22-39 82:33 162-42 259-38
6 22-39 82:33 162-24 254-63
8 22-39 82:33 162-21 254-62
10 22-39 82:33 162-20 254-59

three modes of the shell in vacuo are given in Figure 2 versus the number n of
circumferential waves. In vacuo, the 1st mode corresponds to m = 1, the 2nd
mode to m = 2 and the 3rd mode to m = 3, where m is the number of axial half-
waves. Figure 2 shows that the fundamental mode of the studied shell has
(n, m) = (3, 1).

The natural frequencies of sloshing and bulging modes of the water-filled shell
in contact with external water up to H =1 m are shown in Figures 3 and 4,
respectively. The natural frequencies of sloshing modes increase with »n, while the
fundamental bulging mode of the system has n = 4. It is important to note that,
in this case, the number m of axial half-waves has no more importance, as a
consequence that natural modes are given by a superposition of sine functions
having different m values. The effect of fluid is to decrease largely the natural
frequencies of bulging modes, which are modes originated by the elasticity of the
structure, and to introduce in the system modes due to oscillations (sloshing) of
external liquid having very low natural frequencies.

500
450 [~
400 -
350 [~ "
300 — o '

250 [—

Frequency (Hz)

200~ % n o

Figure 2. Natural frequencies of the empty shell studied as a function of the number of nodal
diameters n. ¢, 1st mode; W, 2nd mode; A, 3rd mode.
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Figure 3. Natural frequencies of sloshing modes of the water-filled shell partially immersed up
to H =1 m as a function of the number of nodal diameters, n. 4, Ist mode; W, 2nd mode; A,
3rd mode.

The second case studied is an empty, simply supported shell partially in
contact with external water. The following dimensions and material properties
are taken: ¢ = 1-27m, L = 1 m, h = 3 mm, p = 1000 kg/m?3, pr = 3656 kg/m?,
E = 6865 GPa and v = 0-3. They correspond to a squat aluminium shell in
water. The natural frequencies of the first four modes of the shell in vacuo,
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Figure 4. Natural frequencies of bulging modes of the water-filled shell partially immersed up
to H =1 m as a function of the number of nodal diameters, n. 4, 1st mode; W, 2nd mode; A,
3rd mode.
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according with Fliigge theory of shells, for n = 4 are: 265-1, 432-8, 4916 and
521-3 Hz. The effect of level H of external water for bulging modes having n = 4
is investigated in Figure 5. Bulging mode shapes for H = 0-5 (n = 4) are shown
in Figure 6, where it is interesting to note that significant waves (represented in
the same scale of shell displacement) on the water surface are associated to the
first bulging modes of the system. This figure shows a section of the shell along
its longitudinal axis. Mode shapes are symmetrical with respect to the shell axis
since n is even. The complex shape of the radial shell displacement w is also
clearly visible in the figure.

The free surface waves are in-phase with the shell oscillation. These waves, at
the shell-water interface, present a local maximum or minimum depending on
the shell mode shape. In particular, the shell is shown with inwards displacement
in Figure 6(a), so that the fluid has moved in the inward direction and there is a
minimum at the shell-water interface. Similar phenomena are observed for the
other modes shown in Figures 6(b—d).

It is interesting to note that in the studied cases there is a significant
separation between bulging and sloshing frequencies, so that the coupling
between the two families of modes is quite weak. However, for extremely thin
and flexible shells a much more significant coupling is expected.

6. CONCLUSIONS

Bulging modes of thin shells are largely affected by the presence of internal
and external dense fluids. Both natural frequencies and mode shapes are
modified by the fluid—structure interaction. Moreover, external fluid presents a
free surface, so that it introduces in the system a second family of modes, the
sloshing modes, characterized by low natural frequencies.
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Figure 5. Natural frequency of bulging modes of the empty shell partially immersed in water
as a function of the level H/L for n = 4. ¢, 1st mode; W, 2nd mode; A, 3rd mode; x 4th mode.
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Figure 6. Mode shapes of the first four bulging modes of the empty shell partially immersed
in water up to H = 0-5m for n=4. (a) 1st mode, frequency 82-1 Hz; (b) 2nd mode, frequency
155-3 Hz; (c) 3rd mode, frequency 221-:6 Hz; (d) 4th mode, frequency 286-4 Hz.

It seems that no studies are available for circular cylindrical shells coupled to
an external unbounded fluid, considering the effect of free surface waves. An
unbounded fluid domain, such as the one studied, can be simulated with
difficulty by standard finite element programs. In contrast, the Rayleigh—Ritz
method, employed in the present study, allows a fast and reliable solution to the
problem to be obtained.
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APPENDIX A: EFFECT OF THE RADIUS ON THE INERTIA OF INTERNAL
FLUID

It is interesting to note that, for small y values, I,(y)/1,(y) = y, whereas for
large y values, L,(y)/1)(y) = 1. Therefore, the reference kinetic energy of the
fluid inside the shell/tube, equation (14), for small R;/L is given by

1 L&
TFt_ZipF’_R%REBZqu. (Al)
s=1

Expression (Al) is easily related to the inertia of the whole fluid mass subjected
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to a displacement being only a function of the axial co-ordinate x. Therefore, it
is verified that, for small R,/L values, the system composed of shell/tube and
fluid has a virtual mass given by the mass of the shell plus the mass of the
contained fluid.

YIRS DT NS m R
=

R 2

RS KR = =R
=

s
o]

PF,
Pr

APPENDIX B: NOMENCLATURE

mean shell radius

normalization coefficient

stiftness of rotational springs
Young’s modulus

gravity acceleration

shell thickness

fluid level

modified Bessel function of order n
Bessel function of order n
modified Bessel function of order n
shell length

number of circumferential waves
radial co-ordinate

internal shell radius

external shell radius

number of axial half-waves

axial shell displacement
circumferential shell displacement
radial shell displacement

axial co-ordinate

Bessel function of order n
deformation potential of the fluid
velocity potential of the fluid
Poisson ratio

mass density of the internal fluid
mass density of the external fluid
mass density of shell or tube
angular co-ordinate

radian frequency
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