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Free vibrations of circular cylindrical shells and tubes completely ®lled with a
dense ¯uid and partially immersed in a di�erent ¯uid (liquid) having a free
surface are studied. Elastic shell constraints, varying from simply supported to
clamped ends are assumed. Fluids are assumed to be stationary, inviscid and
incompressible. The ¯uid outside the shell is assumed to be unlimited in the
radial direction and limited in the vertical direction by a rigid bottom and a
free surface. The e�ect of free surface waves is considered, so that both
sloshing and bulging modes of the system are investigated. A velocity potential
is used to describe the ¯uid oscillations, and the Rayleigh±Ritz method has
been extended to the case of ¯uid±structure interaction to obtain the solution
of the coupled system.

# 1999 Academic Press

1. INTRODUCTION

Vibrations of thin walled structures interacting with dense ¯uids are important in
many engineering applications, for example in heat exchangers, nuclear plants,
large storage tanks and rockets. Many studies are available on this topic from
which circular cylindrical shells have received a large attention.
In the present study, free vibrations of circular cylindrical shells and tubes

completely ®lled with a dense ¯uid and partially immersed in a different ¯uid
(liquid) having a free surface are studied. Elastic shell constraints, varying from
simply supported to clamped ends are assumed. This is an idealisation of a
con®guration that can be observed, for example, in off-shore structures or in
steam condensers. Natural frequencies of tubes in similar situations are
important for the computation of the critical velocity that gives the tube
instability. The model developed is suitable to study ¯exural vibrations of both
short and long shells (circular tubes). In fact, in some applications (e.g., steam
condensers) the tubes are relatively long and can be conveniently studied as
beams. It can also be noted that tubes in a steam condenser are usually
expanded at the ends, so that they can be modelled with an elastic constraint
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with respect to the ¯exural slope, i.e., a constraint comprised between simply
supported and clamped ends, depending on the assumed spring stiffness.
Different internal and external ¯uids are considered in this study. They are

assumed to be stationary, inviscid and incompressible. The ¯uid outside the shell
is assumed to be unlimited in the radial direction and limited in the vertical
direction by a rigid bottom and a free surface. The effect of free surface waves is
considered. Since the ¯uid inside the shell/tube is assumed to be stationary, the
effect of ¯uid-¯ow inside the shell/tube is not studied. This effect has already
been investigated for example by PaõÈ doussis et al. [1], PaõÈ doussis [2] and Weaver
and Unny [3] in the case of ¯uid-®lled shells and tubes, however, without
considering free surface waves. Finally, in the present study, the velocity
potential is used to describe the ¯uid oscillations, and the Rayleigh±Ritz method
has been extended to the case of ¯uid±structure interaction [4] to obtain the
solution of the coupled system.
Other studies can be related to the present one. Vibrations of beams in dense

¯uid have been studied, e.g., in references [5±7]. Vibrations of completely ¯uid-
®lled circular cylindrical shells have been investigated by Berry and Reissner [8];
their study was then extended to modes having more longitudinal half-waves by
Lindholm et al. [9]. Shell vibrations in other con®gurations related to the present
one have been studied, e.g., by Amabili [4], Amabili et al. [10], Au-Yang [11],
Chiba [12], GoncË alves and Ramos [13], and Warburton [14]. However, it seems
that no studies are available for circular cylindrical shells coupled to an external
unbounded ¯uid, considering the effect of free surface waves and studying the
coupling between sloshing modes (where the amplitude of the free surface waves
is larger than the wall displacement) that are originated by ¯uid oscillations, and
bulging (where the shell wall oscillates, thus moving the liquid) modes, that are
due to the structure's elasticity. In order to lighten the text, in the following the
word ``shell'' is sometimes also used to indicate tubes.

2. BASIC EQUATIONS

The Rayleigh±Ritz method [15] is applied to ®nd the natural modes and
frequencies of the simply supported shell, assuming the time variation to be
harmonic. A cylindrical co-ordinate system (O; x, y, r) is introduced with the
origin O placed at the centre of the bottom end of the shell (Figure 1) and u, v, w
are assumed to be the shell displacements in axial, circumferential and radial
directions, respectively. The boundary conditions at the shell ends are

Nx � 0; v � 0; w � 0; at x � 0, L, �1�
where Nx is the force per unit length in the x direction acting at the shell end.
The ¯exural mode shapes w of the shell can be expressed as follows:

w�x, y� � cos�ny�
X1
s�1

qsBs sin�spx=L�, �2�

where L is the length of the shell, n is the number of circumferential waves, s is
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the number of axial half-waves, qs are the parameters of the Ritz expansion and
Bs is a constant dependent on the normalization criterion used; w is assumed to
be positive outwards. The eigenvectors of the empty simply supported (also
called shear diaphragm [16]) cylindrical shell are used as admissible functions.
Obviously, for tube vibrations only modes having n=1 are signi®cant. In the
present analysis, axisymmetric modes (n=0) are not considered. The ¯exural
displacement at time t is obtained multiplying w by the harmonic function
f�t� � eiot, where i � �������ÿ1p

and o is the radian frequency of vibration. Then, the
following normalization is introduced:�L

0

B2
s sin

2�spx=L� dx � 1, �3�

and integration gives

Bs � B �
��������
2=L

p
: �4�

In order to solve the problem, the kinetic and potential energies of the shell
are evaluated. The reference kinetic energy T�T of the shell, neglecting the
tangential and rotary inertia, is given by

T�T � 1

2
rThB

2wn

�2p
0

�L
0

w2 dxa dy � 1

2
rTah

L

2
B2wnp

X1
s�1

q2s , �5�

where h is the shell/tube thickness, a is the mean radius, rT is the density of the
shell material [kg/m3] and wn � 1 for n 6� 1 and wn � 2 for beam bending (n=1)

L

R1

R2

h

w
H

x
r

Fluid

Fluid

o

Rotational spring

Figure 1. Geometry of the system and co-ordinates.
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modes of long shells (L/(sa)e 4). In equation (5) the orthogonality of the sine
function has been used. Neglecting tangential inertia is a very good
approximation for thin shells. However, it is completely unacceptable for long
shells in their beam bending (n=1) modes [16]. For these modes the effective
inertia is twice the quantity obtained with this approximation; this is the reason
for introducing the parameter wn in equation (5).
It is now useful to note that the maximum potential energy of each mode of

the empty shell is equal to the reference kinetic energy of the same mode
multiplied by the squared circular frequency o2

s of this mode. Moreover, due to
the series expansion of the mode shape, the potential energy is the sum of the
energies of each single component mode. As a consequence, the maximum
potential energy of the shell may be expressed as

VT � 1

2
rTha

L

2
B2wnp

X1
s�1

q2so
2
s , �6�

where os are the circular frequencies (rad/s) of the ¯exural modes of the simply
supported shell that can be computed by using, for example, the FluÈ gge theory
[16] for shells or the classical formula for the free transverse vibrations of a
simply supported beam [17] for tubes.
Elastic rotational springs of stiffness c (N m/m) are assumed to be distributed

around each shell end (see Figure 1). The maximum potential energy VS

associated with these elastic springs is given by

VS � 1

2
c

�2p
0

@w

@x

� �2

x�0
� @w

@x

� �2

x�L

" #
a dy

� caB2p2

2L

X1
s�1

X1
j�1

qsqjsj�1� �ÿ1�s�j�: �7�

It is to be noted that c=0 gives simply supported ends and c!1 gives
clamped ends. In the computations, one takes a suf®ciently high value of c to
simulate a clamped end [4].

3. FLUID±STRUCTURE INTERACTION

The shell is considered completely ®lled with an inviscid and incompressible
dense ¯uid and partially immersed in another dense ¯uid with a free surface
orthogonal to the shell axis. The free surface is at a distance H from the rigid
bottom (Figure 1). The ends of the shell are assumed to be open. Surface tension
of the ¯uid and hydrostatic pressure effects are neglected in the present study.
For an incompressible and inviscid ¯uid, its deformation potential satis®es the

Laplace equation

r2f�x, y, r� � 0: �8�
The deformation potential f is related to the velocity potential ~f by
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~f�x, y, r, t� � iof eiot, �9�
which is assumed to be harmonic. The velocity of the ¯uid v is related to ~f by
v � ÿgrad ~f. In the case studied, there are two different ¯uid domains. One is
inside the shell/tube and one is outside.

3.1. FLUID INSIDE THE SHELL/TUBE

The Laplace equation (8) is solved with the boundary conditions

fi � 0 at x � 0, L and �@fi=@r�r�R1
� ÿw, �10a, b�

where fi is the deformation potential of the ¯uid inside the shell and R1 is the
inner radius of the shell. Moreover fi must be regular in the ¯uid domain.
Equation (10a) states that the shell ends are open and equation (10b) ensures a
contact between the shell wall and the ¯uid. Solution of Laplace equation
satisfying equation (10a) and regularity is [8, 9]

fi �
X1
s�1

as cos�ny�In�spr=L� sin�spx=L�, �11�

where In is the modi®ed Bessel function of order n. Applying condition (10b),
one obtains

as � ÿ qsB

�sp=L�I0n�spR1=L� , �12�

where the prime indicates the derivative with respect to the argument. By using
equations (11, 12) the ¯uid deformation potential fi at the shell±¯uid internal
interface is obtained as follows

�fi�r�R1
� ÿB cos�ny�

X1
s�1

qs sin�spx=L� In�spR1=L�
�sp=L�I 0n�spR1=L� : �13�

The reference kinetic energy of the ¯uid inside the shell, by using Green's
theorem [4, 18], is

T�Fi
� 1

2
rFi

�L
0

�2p
0

fi

@fi

@r

� �
r�R1

dxR1 dy � ÿ 1

2
rFi

R1

�L
0

�2p
0

�fi�r�R1
w dx dy

� 1

2
rFi

R1
L

2
B2p

X1
s�1

q2s
In�spR1=L�

�sp=L�I 0n�spR1=L� , �14�

where rFi
is the mass density of the ¯uid inside the shell. A discussion of the

effect of the shell radius on equation (14) can be found in Appendix A. No
potential energy is associated with the ¯uid inside the shell as a consequence that
it is incompressible and that it does not present a free surface.



572 M. AMABILI

3.2. FLUID OUTSIDE THE SHELL/TUBE

The ¯uid domain outside the shell is not limited in the radial direction; in the
x direction it is limited by a rigid surface at x=0 and the free surface at x=H.
The ¯uid deformation potential fo, using the principle of superposition, can be
divided into

fo � fB � fS, �15�
where fB describes the potential of the ¯uid associated with bulging modes of
the shell considering a zero dynamic pressure on the undisturbed free surface
and fS is due to the sloshing (oscillations) of the ¯uid considering the shell as
rigid.
The boundary conditions imposed to the liquid for the two complementary

boundary value problems are

@fB

@x

� �
x�0
� 0,

@fB

@r

� �
r�R2

� ÿw, �fB�x�H � 0, lim
r!1fB � lim

r!1�@fB=@r� � 0,

�16a±d�
and

@fS

@x

� �
x�0
� 0,

@fS

@r

� �
r�R2

� 0, g
@fo

@x

� �
x�H
� o2�fo�x�H,

lim
r!1fS � lim

r!1�@fS=@r� � 0:

�17a±d�

In equations (16) and (17), R2 is the outer radius of the shell. By using equations
(15) and (16c), the linearized free surface condition [18], equation (17c), can be
rewritten as

g
@�fB � fS�

@x

� �
x�H
� o2�fS�x�H, �18�

where g is the gravity acceleration.
The Rayleigh quotient [4, 19] for the coupled ¯uid-structure system studied, is

given by:

o2 � �VT � VS � VFo
�=�T �T � T �Fi

� ~T �Fo
�: �19�

The only terms that remain to be computed in equation (19) are the reference
kinetic energy of the ¯uid outside the shell, ~T �Fo

, and its maximum potential
energy, VFo

, related to the free surface waves of the ¯uid itself. By using Green's
theorem for harmonic functions [4, 18], the reference kinetic energy of the ¯uid
outside the shell can be transformed into

~T�Fo
� 1

2
rFo

� �
ST�SF

fo

@fo

@z
dS, �20�

where rFo
is the mass density of external ¯uid, z is the direction normal to any
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point on the boundary surface S of the ¯uid domain and is pointed outwards,
S=ST+SF, where ST is the shell lateral external surface and SF is the free
liquid surface (no contribution to ~T �Fo

is given by integration over the rigid
bottom). The simpli®ed reference kinetic energy T �Fo

of the ¯uid outside the shell
is also de®ned as

T �Fo
� 1

2
rFo

� �
ST

fo

@fo

@z
dS � 1

2
rFo

� �
ST

�fB � fS�w dS � T �FB
� T �FS

: �21�

The maximum potential energy VF of the free surface waves of the ¯uid is given
by [4]

VFo
� 1

2
rFo

g

� �
SF

@fo

@z

@fo

@z
dS � 1

2
rFo

o2

� �
SF

fo

@fo

@z
dS, �22�

where the second equality is obtained by using the free surface condition,
equation (17c). It is interesting to observe that, by using equations (20) and (22),
the Rayleigh quotient can be rewritten in the following simpli®ed form:

o2 � �VT � VS�=�T �T � T �Fi
� T �Fo

�, �23�
where the potential energy VFo

does not appear. Furthermore, it is no longer
necessary to integrate the quantity fo�@fo=@z� over the free surface of the ¯uid
SF. In conclusion, only the additional term T �Fo

due to the external ¯uid must still
be computed and is given by two terms, as shown in equation (21).

3.2.1. Fluid deformation potential related to bulging modes

In this section, the deformation potential of the ¯uid related to bulging modes
of the shell is investigated. The ¯uid deformation potential fB is assumed to be
of the form

fB �
X1
s�1

qsFs: �24�

The functions Fs are given by

Fs�x, y, r� �
X1
m�1

AsmKn
2mÿ 1

2
p
r

H

� �
cos

2mÿ 1

2
p
x

H

� �
cos�ny�, �25�

where Asm are coef®cients depending on the integers s and m, H is the ¯uid level
and Kn is the modi®ed Bessel function of order n. Functions Fs satisfy the
Laplace equation and the two boundary conditions given in equations (16b, c);
moreover they satisfy the Sommerfeld radiation condition (16d). The condition
given in equation (16a) is used to compute the coef®cients Asm:X1

m�1
Asm
�2mÿ 1�p

2H
K 0n

2mÿ 1

2
p
R2

H

� �
cos

2mÿ 1

2
p
x

H

� �
� ÿB sin sp

x

L

� �
: �26�
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Equation (26) must be satis®ed for all values of 0ExEH. If this equation is
multiplied by cos�12 �2jÿ 1��px=H�� and then integrated between 0 and H, using
the well-known properties of the orthogonal trigonometric functions, the
following equation is obtained

Fs �
X1
m�1

ÿ4B
�2mÿ 1�p ssm

Kn
2mÿ 1

2
p
r

H

� �
K 0n

2mÿ 1

2
p
R2

H

� � cos
2mÿ 1

2
p
x

H

� �
cos�ny�, �27�

where

ssm �
s

L
� �ÿ1�m 2mÿ 1

2H
sin sp

H

L

� �
s2

L2
ÿ 4m2 ÿ 4m� 1

4H2

� �
p

if s 6� 2mÿ 1

2

L

H
, �28a�

or

ssm � L

2sp
if s � 2mÿ 1

2

L

H
: �28b�

Therefore, the term T �FB
of the reference kinetic energy of the ¯uid is given by

T �FB
� 1

2
rFo

�2p
0

�H
0

�fB�r�R2
wR2 dy dx

� ÿ 1

2
rFo

B2R2p
X1
s�1

X1
j�1

qsqj
X1
m�1

4ssmsjm
�2mÿ 1�p

Kn
2mÿ 1

2
p
R2

H

� �
K 0n

2mÿ 1

2
p
R2

H

� � : �29�

3.2.2. Fluid deformation potential related to sloshing modes

The ¯uid deformation potential fS due to the sloshing can be written in the
form

fS �
X1
m�1

�
FmJn em

r

R2

� �
cosh em

x

R2

� ��
cosh em

H

R2

� �

� GmYn ~em
r

R2

� �
cosh ~em

x

R2

� ��
cosh ~em

H

R2

� ��
cos�ny�, �30�

where Fm and Gm are the parameters of the Ritz expansion of the sloshing
modes, Jn and Yn are the Bessel functions of order n and em and ~em are solutions
of the following equations

J 0n�em� � 0, Y 0n�~em� � 0, for m � 1; . . .1: �31a, b�
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Constants cosh�emH=R2� and cosh�~emH=R2� are not necessary in equation (30);

however, they are useful to obtain a well-conditioned mass matrix of the system

in the Galerkin equation that is obtained by applying the Rayleigh±Ritz method.

The term T �Fs
of the kinetic energy of the ¯uid due to sloshing is

T �FS
� 1

2
rFo

�2p
0

�H
0

�fS�r�R2
wR2 dx dy

� 1

2
rFo

R2
2pB

X1
s�1

X1
m�1

qs�FmJn�em�gsm= cosh�emH=R2�

� GmYn�~em�~gsm= cosh�~emH=R2��, �32�
where

gsm �
1

R2

�H
0

cosh em
x

R2

� �
sin

spx
L

� �
dx

�
spR2

L
ÿ spR2

L
cos

spH
L

� �
cosh em

H

R2

� �
� em sin

spH
L

� �
sinh em

H

R2

� �
e2m �

s2p2a2

L2

, �33�

and ~gm is obtained from gm by substituting em with ~em in equation (33). The

potential fS satis®es equations (17a, b, d). Now the free surface condition,

equation (18), must be applied. By using equations (27, 30) and eliminating

cos(ny), it gives

ÿ 2B

H

X1
s�1

qs
X1
k�1
�ÿ1�ksskKn

2kÿ 1

2
p
r

H

� ��
K 0n

2kÿ 1

2
p
R2

H

� �
�
X1
m�1

em
R2

FmJn em
r

R2

� �
tanh em

H

R2

� �
� ~em
R2

GmYn ~em
r

R2

� �
tanh ~em

H

R2

� �� �
� o2

g

X1
m�1

FmJn em
r

R2

� �
� GmYn ~em

r

R2

� �� �
: �34�

Equation (34) must be satis®ed for all values of R2Er<1. In the case of a rigid

shell, natural frequencies of sloshing modes are immediately found. They are

o2
m � g�em=R2� tanh�emH=R2� and o2

m � g�~em=R2� tanh�~emH=R2�. In contrast, the

variable r=R2/r, 0<rE1, is introduced and the following Fourier±Bessel

expansions [20, 21] to solve the problem for a ¯exible shell are used

Jn�em=r� �
X1
s�1

asmJn�esr�, �35�

Yn�~em=r� �
X1
s�1

bsmJn�esr�, �36�
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Kn
2kÿ 1

2

p
H

R2

r

� �
�
X1
s�1

cskJn�esr�, �37�

where

asm � 2e2s
�e2s ÿ n2�J2n�es�

�1
0

x Jn
em
x

� �
Jn�esx� dx, �38�

bsm � 2e2s
�e2s ÿ n2�J2n�es�

�1
0

x Yn
~em
x

� �
Jn�esx� dx, �39�

csk � 2e2s
�e2s ÿ n2�J2n�es�

�1
0

x Kn
2kÿ 1

2

p
H

R2

x

� �
Jn�esx� dx: �40�

The functions given in equations (35, 36) are highly oscillating for r close to

zero. However, it was veri®ed that the series expansion converges to the function

in the entire region little away from zero. Inserting equations (35±37) into

equation (34), the following set of algebraic equations is obtained:

ÿ 2B

H

X1
s�1

qs
X1
k�1
�ÿ1�k ssk

K 0
2kÿ 1

2
p
R2

H

� � cik

�
X1
m�1

em
R2

Fmaim tanh em
H

R2

� �
� ~em
R2

Gmbim tanh ~em
H

R2

� �� �
� o2

g

X1
m�1
�Fmaim � Gmbim�, for i � 1, . . .1 : �41�

Equation (34) can also be used to obtain a set of algebraic equations in a

different way. In fact, it is possible to compute all functions of r at different

values ri , R2Eri<1, in order to formally have the same equation (41), where the

following expressions substitute equations (38), (39) and (40):

aim � Jn em
ri
R2

� �
, bim � Yn ~em

ri
R2

� �
, cik � Kn

2kÿ 1

2
p
ri
H

� �
: �42a±c�

Finally, the height Z of free surface waves can be computed by using the

following expression [18]

Z�t� � 1

g

@~f
@t

 !
x�H
� ÿo2

g
�fS�x�H: �43�
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4. FREQUENCY EQUATION

For the numerical calculation of the natural frequencies and the parameters of
the Ritz expansion of modes, only N terms in the expansion of w, equation (1),
and 2�N in the expansion of fS, equation (30), are considered, where N and �N
must be chosen large enough to give the required accuracy to the solution. Thus,
all the energies are given by ®nite summations. Here it is convenient to introduce
a vectorial notation. The vector q of the parameters of the Ritz expansions is
de®ned by

qT � ffqgT, fFgT, fGgTg, fqgT � fq1, . . . qNg,
fFgT � fF1, . . . F�Ng, fGgT � fG1, . . . G�Ng:

�44�

The maximum potential energy of the shell/tube, equation (6), becomes

VT � 1

2
pfqgTKTfqg: �45�

The elements of the diagonal matrix KT are given by

�KT�sj � dsjrTha
L

2
B2wno

2
s , s, j � 1, . . . , N, �46�

and dsj is the Kronecker delta.
The maximum potential energy stored in the elastic spring constraints, using

equation (7), is given by

VS � 1

2
pfqgTKSfqg, �47�

where the elements of the matrix KS are

�KS�sj � c�a=L�pB2sj�1� �ÿ1�s�j�, s, j � 1, . . . , N: �48�

The reference kinetic energy of the shell/tube, equation (5), may be rewritten
as

T �T �
1

2
pfqgTMTfqg, �49�

where

MT � rTha�L=2�B2wnI, �50�
and I is the N6N identity matrix.
The simpli®ed reference kinetic energy of the ¯uid, that was previously divided

into one contribution due to the ¯uid inside the shell and two different
contributions due to the ¯uid outside, equation (21), can be rewritten as

T �L �
1

2
pqTMF q, �51�

where MF is a symmetric partitioned matrix of dimension �N� 2�N�6�N� 2�N�:
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MF � MB MS1 MS2

�0� �0� �0�
� �

, �52�

in which the submatrix MB of dimension N6N is given by the contribution of
T �Fi

and T �FB

MB �Mi �Mo: �53�
The elements of the submatrix MB due to T �Fi

according to equation (14), are
given by

�Mi�sj � dsjrFi
R1

L

2
B2 In�spR1=L�
�sp=L�I 0n�spR1=L� , for s, j � 1, . . . , N, �54�

where dsj is the Kronecker delta. The elements of the submatrix Mo due to T �FB
,

according to equation (29), are given by

�Mo�sj � ÿrFo
R2B

2
X1
m�1

4ssmsjm
�2mÿ 1�p

Kn
2mÿ 1

2
p
R2

H

� �
K 0n

2mÿ 1

2
p
R2

H

� � , for s, j � 1, . . . , N, �55�

where ssm are de®ned in equations (28a, b).
The elements of the submatrices MS1 and MS2 of dimension N6�N, according

to equation (32), are

�MS1�sm � rFo
R2

2B Jn�em�gsm= cosh�emH=R2�, for s � 1, . . . , N and

m � 1, . . . , �N, �56�

�MS2�sm � rFo
R2

2B Yn�~em�~gsm= cosh�~emH=R2�, for s � 1, . . . , N and

m � 1, . . . , �N: �57�

The free surface condition, equation (41), can be rewritten in the following
form:

fE1, E2, E3g
fqg
fFg
fGg

8<:
9=; � o2f�0�, H1, H2g

fqg
fFg
fGg

8<:
9=;, �58�

where E1 has dimension 2�N6N and E2, E3, H1 and H2 have dimension 2�N6�N;
these matrices are given by

�E1�ij � ÿg
2B

H

X1
k�1

sjkcik�ÿ1�k=K 0n
2kÿ 1

2
p
R2

H

� �
, for i � 1, . . . , 2�N and
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j � 1, . . . N, �59�

�E2�ij � gaij�ej=R2� tanh�ejH=R2�, for i � 1, . . . 2�N and j � 1, . . . �N, �60�

�E3�ij � gbij�~ej=R2� tanh�~ejH=R2�, for i � 1, . . . 2�N and j � 1, . . . �N, �61�

�H1�ij � aij, for i � 1, . . . 2�N and j � 1, . . . �N, �62�

�H2�ij � bij, for i � 1, . . . 2�N and j � 1, . . . �N: �63�

The values of the vector q of the parameters of the Ritz expansion are
determined in order to render the Rayleigh quotient of equation (23) stationary
[15], by also inserting in the eigenvalue problem the free surface condition that
determines the value of the coef®cients Fm and Gm [4, 10, 12, 13]. Then the
following Galerkin equation is obtained:

KT � KS �0� �0�
E1 E2 E3

� �
qÿ L2 MT �MB MS1 MS2

�0� H1 H2

� �
q � 0; �64�

where L is the circular frequency of the shell/tube ®lled and partially submerged
with ¯uid. Equation (64) gives a linear eigenvalue problem for a real, non-
symmetric matrix.
The pressure exerted by the ¯uid at a point of the shell/tube wall can be

computed by using the linearized Bernoulli equation:

�p�point � rF�@~f=@t�point � ÿrFo2�f�point eiot, �65�
where rF and f are relative to the ¯uid inside or outside the shell.

5. NUMERICAL RESULTS

Numerical solutions have been obtained by using the software Mathematica
[22] to compute matrices and solve the eigenvalue problem associated with
equation (64). In particular, 10 terms have been used in the expansion of shell
modes and four terms in the expansion of the sloshing potential. These are
enough to give a good accuracy for studied cases. In fact, the eigenvalues quickly
converge (from above) to the actual ones increasing the number of terms used in
the expansion. Table 1 shows the convergence of the solution with the number N
of terms in the expansion of w (®rst case studied).
The ®rst case studied is a water-®lled, simply supported shell partially in

contact with external water to the level H=1 m. The following dimensions
and material properties are taken: a=0�25 m, L=2 m, h=1 mm,
rFi
� rFo

� 1000 kg=m3, rT=7850 kg/m3, E=206 GPa and �=0�3. They
correspond to a very thin steel shell in water. The natural frequencies of the ®rst
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three modes of the shell in vacuo are given in Figure 2 versus the number n of

circumferential waves. In vacuo, the 1st mode corresponds to m=1, the 2nd

mode to m=2 and the 3rd mode to m=3, where m is the number of axial half-

waves. Figure 2 shows that the fundamental mode of the studied shell has

(n, m)= (3, 1).

The natural frequencies of sloshing and bulging modes of the water-®lled shell

in contact with external water up to H=1 m are shown in Figures 3 and 4,

respectively. The natural frequencies of sloshing modes increase with n, while the

fundamental bulging mode of the system has n=4. It is important to note that,

in this case, the number m of axial half-waves has no more importance, as a

consequence that natural modes are given by a superposition of sine functions

having different m values. The effect of ¯uid is to decrease largely the natural

frequencies of bulging modes, which are modes originated by the elasticity of the

structure, and to introduce in the system modes due to oscillations (sloshing) of

external liquid having very low natural frequencies.

TABLE 1

Natural frequencies (Hz) of the ®rst four bulging modes of the steel shell, obtained with
different number N of terms in the Rayleigh±Ritz expansions of w; n=2 and �N=2

N 1st mode 2nd mode 3rd mode 4th mode

2 22�39 82�72 ± ±
4 22�39 82�33 162�42 259�38
6 22�39 82�33 162�24 254�63
8 22�39 82�33 162�21 254�62
10 22�39 82�33 162�20 254�59
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Figure 2. Natural frequencies of the empty shell studied as a function of the number of nodal
diameters n. ^, 1st mode; &, 2nd mode; ~, 3rd mode.
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The second case studied is an empty, simply supported shell partially in

contact with external water. The following dimensions and material properties

are taken: a=1�27 m, L=1 m, h=3 mm, rFo
� 1000 kg=m3, rT=3656 kg/m3,

E=68�65 GPa and �=0�3. They correspond to a squat aluminium shell in

water. The natural frequencies of the ®rst four modes of the shell in vacuo,
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Figure 3. Natural frequencies of sloshing modes of the water-®lled shell partially immersed up
to H=1 m as a function of the number of nodal diameters, n. ^, 1st mode; &, 2nd mode; ~,
3rd mode.
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Figure 4. Natural frequencies of bulging modes of the water-®lled shell partially immersed up
to H=1 m as a function of the number of nodal diameters, n. ^, 1st mode; &, 2nd mode; ~,
3rd mode.
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according with FluÈ gge theory of shells, for n=4 are: 265�1, 432�8, 491�6 and
521�3 Hz. The effect of level H of external water for bulging modes having n=4
is investigated in Figure 5. Bulging mode shapes for H=0�5 (n=4) are shown
in Figure 6, where it is interesting to note that signi®cant waves (represented in
the same scale of shell displacement) on the water surface are associated to the
®rst bulging modes of the system. This ®gure shows a section of the shell along
its longitudinal axis. Mode shapes are symmetrical with respect to the shell axis
since n is even. The complex shape of the radial shell displacement w is also
clearly visible in the ®gure.
The free surface waves are in-phase with the shell oscillation. These waves, at

the shell±water interface, present a local maximum or minimum depending on
the shell mode shape. In particular, the shell is shown with inwards displacement
in Figure 6(a), so that the ¯uid has moved in the inward direction and there is a
minimum at the shell±water interface. Similar phenomena are observed for the
other modes shown in Figures 6(b±d).
It is interesting to note that in the studied cases there is a signi®cant

separation between bulging and sloshing frequencies, so that the coupling
between the two families of modes is quite weak. However, for extremely thin
and ¯exible shells a much more signi®cant coupling is expected.

6. CONCLUSIONS

Bulging modes of thin shells are largely affected by the presence of internal
and external dense ¯uids. Both natural frequencies and mode shapes are
modi®ed by the ¯uid±structure interaction. Moreover, external ¯uid presents a
free surface, so that it introduces in the system a second family of modes, the
sloshing modes, characterized by low natural frequencies.
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Figure 5. Natural frequency of bulging modes of the empty shell partially immersed in water
as a function of the level H/L for n=4. ^, 1st mode; &, 2nd mode; ~, 3rd mode; 6 4th mode.
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It seems that no studies are available for circular cylindrical shells coupled to
an external unbounded ¯uid, considering the effect of free surface waves. An
unbounded ¯uid domain, such as the one studied, can be simulated with
dif®culty by standard ®nite element programs. In contrast, the Rayleigh±Ritz
method, employed in the present study, allows a fast and reliable solution to the
problem to be obtained.
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APPENDIX A: EFFECT OF THE RADIUS ON THE INERTIA OF INTERNAL
FLUID

It is interesting to note that, for small y values, In�y�=I 0n�y� � y, whereas for
large y values, In�y�=I 0n�y� � 1. Therefore, the reference kinetic energy of the
¯uid inside the shell/tube, equation (14), for small R1/L is given by

T �Fi
� 1

2
rFi

R2
1p

L

2
B2
X1
s�1

q2s : �A1�

Expression (A1) is easily related to the inertia of the whole ¯uid mass subjected
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to a displacement being only a function of the axial co-ordinate x. Therefore, it
is veri®ed that, for small R1/L values, the system composed of shell/tube and
¯uid has a virtual mass given by the mass of the shell plus the mass of the
contained ¯uid.

APPENDIX B: NOMENCLATURE

a mean shell radius
B normalization coef®cient
c stiffness of rotational springs
E Young's modulus
g gravity acceleration
h shell thickness
H ¯uid level
In modi®ed Bessel function of order n
Jn Bessel function of order n
Kn modi®ed Bessel function of order n
L shell length
n number of circumferential waves
r radial co-ordinate
R1 internal shell radius
R2 external shell radius
s number of axial half-waves
u axial shell displacement
v circumferential shell displacement
w radial shell displacement
x axial co-ordinate
Yn Bessel function of order n
f deformation potential of the ¯uid
~f velocity potential of the ¯uid
� Poisson ratio
rFi

mass density of the internal ¯uid
rFo

mass density of the external ¯uid
rT mass density of shell or tube
y angular co-ordinate
o radian frequency
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